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1. INTRODUCTION

In [2-7] several versions of the Weierstrass theorem concerning approx-
imation of continuous functions by means of polynomials in the case of
Hilbert and Banach spaces are given. In all of these papers a crucial role is
played by the compactness of the domain. Such a hypothesis appears to be
quite restrictive in some important applications in which only boundedness
of the domain is available: e.g., those regarding the approximation of
input-output maps by means of Volterra series expansion in System Theory
(1}

In this paper the boundedness of the domain will be assumed; however, a
stronger continuity property of the function is required in order to get the
polynomial approximation sought.- Such a property appears to be a very
“physical” one in System Theory, in that it corresponds to a smoothing
action of the input-output map.

2. PRELIMINARIES

Let &, # be real separable Hilbert spaces and .%, %’ Banach spaces.
Let us recall that a n-linear operator M on #" &% X --- X # (n times)
into 2#" is a map which is linear in each of its arguments separately. It is
natural to define

M x" & M(x,.., x)
ntimes
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as the n-degree monomial operator (associated to the multilinear operator
M) on # into #". Then the operator P: # - #", defined as

PxX)AMx"+M, x""'4. ...+ Mx+M,,
X n

where M, stands for a constant operator, is called an n-degree polynomial
operator.
We need also to recall the following definition:

DEFINITION. A map F:# — % is said to be uniformly continuous with
respect to the S-topology (by Sazonov [8]) if, for any ¢ > 0, there exists a
self-adjoint nonnegative definite trace-class linear operator S, : # — # such
that

[S.(x' —x"), x" —x"] < 1 x',x" in # H
implies

I F(x") = F(x")l <. @)

Remark. In the linear Hilbert space case the uniform S-Continuity
implies the Hilbert—-Schmidt property for F. Note that the S-topology is
weaker than the norm topology.

The following results may be useful to characterize the class of uniformly
S-continuous functions on bounded domains.

THEOREM 1. Any map F:# — % which is uniformly continuous with
respect to the S-topology is also compact.

Proof. We will have to show that F carries bounded sets in -# into sets
whose closure is compact. Let £2 be any bounded set in 5# and let 2 be its
closure. Then F(£2) is compact. For, let {y,} be any sequence in F(£2), then
the sequence {x,€ 2:y,=F(x,)} admits a subsequence {x,} weakly
convergent by the weak compactness theorem. Thus for any Hilbert—Schrhidt
operator L:-#" —# (actually any compact operator), the sequence {Lx, | is
strongly convergent and the same holds for the sequence {F(x, )} because of
the uniform S-continuity. [

THEOREM 2. Let G:# - % be a map uniformly continuous with
respect to the S-topology on a bounded set Q in #, and g: L' > £ a
continuous map. Then the map F=go G is uniformly continuous with
respect to the S-topology on 0.
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Proof. The result is readily achieved by observing that
I FGe) — FGe )l =1 (G(x)) —g(Gx')Il < &5 x,x" in Q 3)
if
I G(x)— G|l <9, 4)

because g is uniformly continuous on G(Q), —Cm)—; being compact by
Theorem 1. Moreover, from the uniform S-continuity of G, there exists a
self-adjoint nonnegative definite trace-class operator S, :#”— #'such that,
for any x, x’ in 2 satisfying

S =) x—x] < 1, ©)
inequalities (4), and then (3), hold.

3. APPROXIMATION IN A BOUNDED DoMAIN
Now we can state the main result:

THEOREM 3. Let F:# - #" be continuous, and let 2 be any bounded
set in . If F restricted to Q2 is uniformly continuous with respect to the S-
topology then, for any € > 0, there exists a continuous polynomial P on #
into &' such that

sup || Flx) — Px)] <e. (6)
X€e

Proof. The proof goes along the same lines as in Prenter’s theorem [6].
Let {9}, {w,;}° be orthonormal bases for # and -#” respectively and T,

IT}, the projection operators from #° and -#" onto H, A spanig, ,..., ¢,,} and
H', & span{y, ,..., ¥,,}. So we can define the map Fj,:# —#" as

FLAMmoFoll.
Observe now that
sup || F(x) — P(x)|
xe}

< sup I F(x) — P}l < sup I1FGx) = Fou ()| + sup [ Fr(x) — PG (7)

We start proving that for any n, m, given ¢ > 0, there exists a continuous
polynomial P such that

sup | Frulx) = P(x)]| < &/2. ®)
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For, let K, & IT(Q2). K, is compact. Let then F™, be the restriction of F” to
H,. F" is a continuous map from K, into H', and, as such, by a slight

n* m
modification of Theorem 4.1 in |6], can be uniformly approximated in K, by
a continuous polynomial P:H, - H',, so that

sup [|Fr(x) — P(x)l| < e/2.
xeK,
Now let us extend P to P defined on the whole # as follows
P(x)APoIl"x, xEXZ.
Clearly P is a continuous polynomial of finite rank on -#. Thus
sup || Fp,(x) — P(x)|
xefl
= sup |3 o Folllpx—Po Il x|
xell
= sup [T 0 Fo Mo Myx — Fo My x|

xefl
= sup | % o Fo ITyz — P(2)|

zeK,

= sup [|F1(2) — P(z)] < /2.

Now it remains to prove that
sup || F(x) — FR(x)l| < &/2 )
xell
for n and m enough large. For, we observe that
sup || F(x) — Fp(x)| = sup [F(x) — I3 o F o IT5 x||
xell xefl
< sup | F(x) — F o Ty x|
xefl

4 sup |FoMyx— M7 o Follyx|.  (10)
xefl

Let us consider the compact set C, & F o IT%({2). Then, by the Lemma 5.2 in
[6], given ¢ > 0 and any integer n, there exists a (e, n) such that

sup ||F o Ty x — T o F o My x|
xely

= sup ly — % y|| < &/4, Ym > u(e, n). (1)
veC,
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Now, (9) follows from (10) and (11) as soon as we show the existence of a
v(g) such that

sup || F(x) — F o II% x| < ¢/4, Yn > v(e). (12)
xel
From the definition of uniform continuity with respect to the S-topology, it

follows that, given ¢ > 0, there exists a self-adjoint nonnegative definite trace-
class operator S, ,:# — -#, such that

[F(x)—Follyx||<e/4;  xin2 (13)
if
[Sqale — My x), x — My x] < 1. (14)

So we will conclgde the proof by showing that (14) is uniformly verified with
respect to x € 2 for n enough large. For, denoting by L, :# - #, the
Hilbert—Schmidt operator, such that S, =L*L_, we have

Sup (8,4 — I ), x — . x]
xel
=sup [L¥L (x — T x), x — T, x|
xed

>, =
= sup lLe Z [x"pl](pi’Le \_ [x,(l)j](ﬂj]

xel i=n+1 j=n+1
© 2
=sup | > [xelL.o;
xell |li=n+1
[oe] 2
<swp | X flmad Lo |
xe@ li=n+1
[es] x
S O 2
<sup Y [xwolt Y (Ll
xel j=p+1 i=n+1
w0
<sup x> Y Lol
xe{l i=n+1
L& )
= S Loyl (15)
i=n+1

where M A sup, || x||. This implies that an integer v(e) exists such that
(14) holds for n > v(g); because (13) is satisfied for any x€ R, (9)
follows. [

Remark. Note that Theorem 3 is equivalent to the denseness of the
continuous polynomials with respect to the family of uniformly S-continuous
functions.
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